PREVIOUSLY I have dealt with the methods of separating silver from copper. There now remains the portion which treats of solidified juices; and whereas they might be considered as alien to things metallic, nevertheless, the reasons why they should not be separated from it I have explained in the second book.

Solidified juices are either prepared from waters in which nature or art has infused them or they are produced from the liquid juices themselves, or from stony minerals. Sagacious people, at first observing the waters of some lakes to be naturally full of juices which thickened on being dried up by the heat of the sun and thus became solidified juices, drew such waters into other places, or diverted them into low-lying places adjoining hills, so that the heat of the sun should likewise cause them to condense. Subsequently, because they observed that in this wise the solidified juices could be made only in summer, and then not in all countries, but only in hot and temperate regions in which it seldom rains in summer, they boiled them in vessels over a fire until they began to thicken. In this manner, at all times of the year, in all regions, even the coldest, solidified juices could be obtained from solutions of such juices, whether made by nature or by art. Afterward, when they saw juices drip from some roasted stones, they cooked these in pots in order to obtain solidified juices in this wise also. It is worth the trouble to learn the proportions and the methods by which these are made.

I will therefore begin with salt, which is made from water either salty by nature, or by the labour of man, or else from a solution of salt, or from lye, likewise salty. Water which is salty by nature, is condensed and converted into salt in salt-pits by the heat of the sun, or else by the heat of a fire in pans or pots or trenches. That which is made salty by art, is also condensed by fire and changed into salt. There should be as many salt-pits dug as the circumstance of the place permits, but there should not be more made than can be used, although we ought to make as much salt as we can sell. The depth of salt-pits should be moderate, and the bottom should be level, so that all the water is evaporated from the salt by the heat of the sun. The salt-pits should first be encrusted with salt, so that they may not suck up the water. The method of pouring or leading sea-water into salt-pits is very old, and is still in use in many places. The method is not less old, but less common, to pour well-water into salt-pits, as was done in Babylon, for which Pliny is the authority, and in Cappadocia, where they used not only well-water, but also spring-water. In all hot countries salt-water and lake-water are conducted, poured or carried into salt-pits, and, being dried by the heat of the sun, are converted into salt. While the salt-water contained in the salt-pits is being heated by the sun, if they be flooded with great and frequent showers of rain the evaporation is hindered. If this happens rarely, the salt acquires a disagreeable flavour, and in this case the salt-pits have to be, filled with other sweet water.

Salt from sea-water is made in the following manner. Near that part of the seashore where there is a quiet pool, and there are wide, level plains which the inundations of the sea do not overflow, three, four, five, or six trenches are dug six feet wide, twelve feet deep, and six hundred feet long, or longer if the level place extends for a longer distance; they are two hundred feet distant from one another; between these are three transverse trenches. Then are dug the principal pits, so that when the water has been raised from the pool it can flow into the trenches, and from thence into the salt-pits, of which there are numbers on the level ground between the trenches. The salt-pits are basins dug to a moderate depth; these are banked round with the earth which was dug in sinking them or in cleansing them, so that between the basins, earth walls are made a foot high, which retain the water let into them. The trenches have openings, through which the first basins receive the water; these basins also have openings, through which the water flows again from one into the other. There should be a slight fall, so that the water may flow from one basin into the other, and can thus be replenished. All these things having been done rightly and in order, the gate is raised that opens the mouth of the pool which contains sea-water mixed with rain-water or river-water; and thus all of the trenches are filled. Then the gates of the first basins are opened, and thus the remaining basins are filled with the water from the first; when this salt-water condenses, all these basins are incrusted, and thus made clean from earthy matter. Then again the first basins are filled up from the nearest trench with the same kind of water, and left until much of the thin liquid is converted into vapour by the heat of the sun and dissipated, and the remainder is considerably thickened. Then their gates being opened, the water passes into the second basins; and when it has remained there for a certain space of time the gates are opened, so that it flows into the third basins, where it is all condensed into salt. After the salt has been taken out, the basins are filled again and again with sea-water. The salt is raked up with wooden rakes and thrown out with shovels.

Salt-water is also boiled in pans, placed in sheds near the wells from which it is drawn. Each shed is usually named from some animal or other thing which is pictured on a tablet nailed to it. The walls of these sheds are made either from baked earth or from wicker work covered with thick mud, although some may be made of stones or bricks. When of brick they are often sixteen feet high, and if the roof rises twenty-four feet high, then the walls which are at the ends must be made forty feet high, as likewise the interior partition walls. The roof consists of large shingles four feet long, one foot wide, and two digits thick; these are fixed on long narrow planks placed on the rafters, which are joined at the upper end and slope in opposite directions. The whole of the under side is plastered one digit thick with straw mixed with lute; likewise the roof on the outside is plastered one and a half feet thick with straw mixed with lute, in order that the shed should not run any risk of fire, and that it should be proof against rain, and be able to retain the heat necessary for drying the lumps of salt. Each shed is divided into three parts, in the first of which the firewood and straw are placed; in the middle room, separated from the first room by a partition, is the fireplace on which is placed the caldron. To the right of the caldron is a tub, into which is emptied the brine brought into the shed by the porters; to the left is a bench, on which there is room to lay thirty pieces of salt. In the third room, which is in the back part of the house, there is made a pile of clay or ashes eight feet higher than the floor, being the same height as the bench. The master and his assistants, when they carry away the lumps of salt from the caldrons, go from the former to the latter. They ascend from the right side of the caldron, not by steps, but by a slope of earth. At the top of the end wall are two small windows, and a third is in the roof, through which the smoke escapes. This smoke, emitted from both the back and the front of the furnace, finds outlet through a hood through which it makes its way up to the windows; this hood consists of boards projecting one beyond the other, which are supported by two small beams of the roof. Opposite the fireplace the middle partition has an open door eight feet high and four feet wide, through which there is a gentle draught which drives the smoke into the last room; the front wall also has a door of the same height and width. Both of these doors are large enough to permit the firewood or straw or the brine to be carried in, and the lumps of salt to be carried out; these doors must be closed when the wind blows, so that the boiling will not be hindered. Indeed, glass panes which exclude the wind but transmit the light, should be inserted in the windows in the walls.

They construct the greater part of the fireplace of rock-salt and of clay mixed with salt and moistened with brine, for such walls are greatly hardened by the fire. These fireplaces are made eight and a half feet long, seven and three quarters feet wide, and, if wood is burned in them, nearly four feet high; but if straw is burned in them, they are six feet high. An iron rod, about four feet long, is engaged in a hole in an iron foot, which stands on the base of the middle of the furnace mouth. This mouth is three feet in width, and has a door which opens inward; through it they throw in the straw.

The caldrons are rectangular, eight feet long, seven feet wide, and half a foot high, and are made of sheets of iron or lead, three feet long and of the same width, all but two digits. These plates are not very thick, so that the water is heated more quickly by the fire, and is boiled away rapidly. The more salty the water is, the sooner it is condensed into salt. To prevent the brine from leaking out at the points where the metal plates are fastened with rivets, the caldrons are smeared over with a cement made of ox-liver and ox-blood mixed with ashes. On each side of the middle of the furnace two rectangular posts, three feet long, and half a foot thick and wide are set into the ground, so that they are distant from each other only one and a half feet. Each of them rises one and a half feet above the caldron. After the caldron has been placed on the walls of the furnace, two beams of the same width and thickness as the posts, but four feet long, are laid on these posts, and are mortised in so that they shall not fall. There rest transversely upon these beams three bars, three feet long, three digits wide, and two digits thick, distant from one another one foot. On each of these hang three iron hooks, two beyond the beams and one in the middle; these are a foot long, and are hooked at both ends, one hook turning to the right, the other to the left. The bottom hook catches in the eye of a staple, whose ends are fixed in the bottom of the caldron, and the eye projects from it. There are besides, two longer bars six feet long, one palm wide, and three digits thick, which pass under the front beam and rest upon the rear beam. At the rear end of each of the bars there is an iron hook two feet and three digits long, the lower end of which is bent so as to support the caldron. The rear end of the caldron does not rest on the two rear corners of the fireplace, but is distant from the fireplace two thirds of a foot, so that the flame and smoke can escape; this rear end of the fireplace is half a foot thick and half a foot higher than the caldron. This is also the thickness and height of the wall between the caldron and the third room of the shed, to which it is adjacent. This back wall is made of clay and ashes, unlike the others which are made of rock-salt. The caldron rests on the two front corners and sides of the fireplace, and is cemented with ashes, so that the flames shall not escape. If a dipperful of brine poured into the caldron should flow into all the corners, the caldron is rightly set upon the fireplace.

The wooden dipper holds ten Roman sextarii, and the cask holds eight dippers full. The brine drawn up from the well is poured into such casks and carried by porters, as I have said before, into the shed and poured into a tub, and in those places where the brine is very strong it is at once transferred with the dippers into the caldron. That brine which is less strong is thrown into a small tub with a deep ladle, the spoon and handle of which are hewn out of one piece of wood. In this tub rock-salt is placed in order that the water should be made more salty, and it is then run off through a launder which leads into the caldron. From thirty-seven dippersful of brine the master or his deputy, at Halle in Saxony, makes two cone-shaped pieces of salt. Each master has a helper, or in the place of a helper his wife assists him in his work, and, in addition, a youth who throws wood or straw under the caldron. He, on account of the great heat of the workshop, wears a straw cap on his head and a breech cloth, being otherwise quite naked. As soon as the master has poured the first dipperful of brine into the caldron the youth sets fire to the wood and straw laid under it. If the firewood is bundles of faggots or brushwood, the salt will be white, but if straw is burned, then it is not infrequently blackish, for the sparks, which are drawn up with the smoke into the hood, fall down again into the water and colour it black.

In order to accelerate the condensation of the brine, when the master has poured in two casks and as many dippersful of brine, he adds about a Roman cyathus and a half of bullock's blood, or of calf's blood, or buck's blood, or else he mixes it into the nineteenth dipperful of brine, in order that it may be dissolved and distributed into all the corners of the caldron; in other places the blood is dissolved in beer. When the boiling water seems to be mixed with scum, he skims it with a ladle; this scum, if he be working with rock-salt, he throws into the opening in the furnace through which the smoke escapes, and it is dried into rock-salt; if it be not from rock-salt, he pours it on to the floor of the workshop. From the beginning to the boiling and skimming is the work of half-an-hour; after this it boils down for another quarter-of-an-hour, after which time it begins to condense into salt. When it begins to thicken with the heat, he and his helper stir it assiduously with a wooden spatula, and then he allows it to boil for an hour. After this he pours in a cyathus and a half of beer. In order that the wind should not blow into the caldron, the helper covers the front with a board seven and a half feet long and one foot high, and covers each of the sides with boards three and three quarters feet long. In order that the front board may hold more firmly, it is fitted into the caldron itself, and the sideboards are fixed on the front board and upon the transverse beam. Afterward, when the boards have been lifted off, the helper places two baskets, two feet high and as many wide at the top, and a palm wide at the bottom, on the transverse beams, and into them the master throws the salt with a shovel, taking half-an-hour to fill them. Then, replacing the boards on the caldron, he allows the brine to boil for three quarters of an hour. Afterward the salt has again to be removed with a shovel, and when the baskets are full, they pile up the salt in heaps.

In different localities the salt is moulded into different shapes. In the baskets the salt assumes the form of a cone; it is not moulded in baskets alone, but also in moulds into which they throw the salt, which are made in the likeness of many objects, as for instance tablets. These tablets and cones are kept in the higher part of the third room of the house, or else on the flat bench of the same height, in order that they may dry better in the warm air. In the manner I have described, a master and his helper continue one after the other, alternately boiling the brine and moulding the salt, day and night, with the exception only of the annual feast days. No caldron is able to stand the fire for more than half a year. The master pours in water and washes it out every week; when it is washed out he puts straw under it and pounds it; new caldrons he washes three times in the first two weeks, and afterward twice. In this manner the incrustations fall from the bottom; if they are not cleared off, the salt would have to be made more slowly over a fiercer fire, which requires more brine and burns the plates of the caldron. If any cracks make their appearance in the caldron they are filled up with cement. The salt made during the first two weeks is not so good, being usually stained by the rust at the bottom where incrustations have not yet adhered.

Although salt made in this manner is prepared only from the brine of springs and wells, yet it is also possible to use this method in the case of river-, lake-, and sea-water, and also of those waters which are artificially salted. For in places where rock-salt is dug, the impure and the broken pieces are thrown into fresh water, which, when boiled, condenses into salt. Some, indeed, boil sea-salt in fresh water again, and mould the salt into the little cones and other shapes.

Some people make salt by another method, from salt water which flows from hot springs that issue boiling from the earth. They set earthenware pots in a pool of the spring-water, and into them they pour water scooped up with ladles from the hot spring until they are half full. The perpetual heat of the waters of the pool evaporates the salt water just as the heat of the fire does in the caldrons. As soon as it begins to thicken, which happens when it has been reduced by boiling to a third or more, they seize the pots with tongs and pour the contents into small rectangular iron pans, which have also been placed in the pool. The interior of these pans is usually three feet long, two feet wide, and three digits deep, and they stand on four heavy legs, so that the water flows freely all round, but not into them. Since the water flows continuously from the pool through the little canals, and the spring always provides a new and copious supply, always boiling hot, it condenses the thickened water poured into the pans into salt; this is at once taken out with shovels, and then the work begins all over again. If the salty water contains other juices, as is usually the case with hot springs, no salt should be made from them.

Others boil salt water, and especially sea-water, in large iron pots; this salt is blackish, for in most cases they burn straw under them. Some people boil in these pots the brine in which fish is pickled. The salt which they make tastes and smells of fish.

Those who make salt by pouring brine over firewood, lay the wood in trenches which are twelve feet long, seven feet wide, and two and one half feet deep, so that the water poured in should not flow out. These trenches are constructed of rock-salt wherever it is to be had, in order that they should not soak up the water, and so that the earth should not fall in on the front, back and sides. As the charcoal is turned into salt at the same time as the salt liquor, the Spaniards think, as Pliny writes, that the wood itself turns into salt. Oak is the best wood, as its pure ash yields salt; elsewhere hazelwood is lauded. But with whatever wood it be made, this salt is not greatly appreciated, being black and not quite pure; on that account this method of salt-making is disdained by the Germans and Spaniards.

The solutions from which salt is made are prepared from salty earth or from earth rich in salt and saltpetre. Lye is made from the ashes of reeds and rushes. The solution obtained from salty earth by boiling, makes salt only; from the other, of which I will speak more a little later, salt and saltpetre are made; and from ashes is derived lye, from which its own salt is obtained. The ashes, as well as the earth, should first be put into a large vat; then fresh water should be poured over the ashes or earth, and it should be stirred for about twelve hours with a stick, so that it may dissolve the salt. Then the plug is pulled out of the large vat; the solution of salt or the lye is drained into a small tub and emptied with ladles into small vats; finally, such a solution is transferred into iron or lead caldrons and boiled, until the water having evaporated, the juices are condensed into salt. The above are the various methods for making salt. (image previous page)

Nitrum is usually made from nitrous waters, or from solutions or from lye. In the same manner as sea-water or salt-water is poured into salt-pits and evaporated by the heat of the sun and changed into salt, so the nitrous Nile is led into nitrum pits and evaporated by the heat of the sun and converted into nitrum. Just as the sea, in flowing of its own will over the soil of this same Egypt, is changed into salt, so also the Nile, when it overflows in the dog days, is converted into nitrum when it flows into the nitrum pits. The solution from which nitrum is produced is obtained from fresh water percolating through nitrous earth, in the same manner as lye is made from fresh water percolating through ashes of oak or hard oak. Both solutions are taken out of vats and poured into rectangular copper caldrons, and are boiled until at last they condense into nitrum.

Native as well as manufactured nitrum is mixed in vats with urine and boiled in the same caldrons; the decoction is poured into vats in which are copper wires, and, adhering to them, it hardens and becomes chrysocolla, which the Moors call borax. Formerly nitrum was compounded with Cyprian verdigris, and ground with Cyprian copper in Cyprian mortars, as Pliny writes. Some chrysocolla is made of rock-alum and sal-ammoniac.

Saltpetre is made from a dry, slightly fatty earth, which, if it be retained for a while in the mouth, has an acrid and salty taste. This earth, together with a powder, are alternately put into a vat in layers a palm deep. The powder consists of two parts of unslaked lime and three parts of ashes of oak, or holmoak, or Italian oak, or Turkey oak, or of some similar kind. Each vat is filled with alternate layers of these to within three-quarters of a foot of the top, and then water is poured in until it is full. As the water percolates through the material it dissolves the saltpetre; then, the plug being pulled out from the vat, the solution is drained into a tub and ladled out into small vats. If when tested it tastes very salty, and at the same time acrid, it is good; but, if not, then it is condemned, and it must be made to percolate again through the same material or through a fresh lot. Even two or three waters may be made to percolate through the same earth and become full of saltpetre, but the solutions thus obtained must not be mixed together unless all have the same taste, which rarely or never happens. The first of these solutions is poured into the first vat, the next into the second, the third into the third vat; the second and third solutions are used instead of plain water to percolate through fresh material; the first solution is made in this manner from both the second and third. As soon as there is an abundance of this solution it is poured into the rectangular copper caldron and evaporated to one half by boiling; then it is transferred into a vat covered with a lid, in which the earthy matter settles to the bottom. When the solution is clear it is poured back into the same pan, or into another, and re-boiled. When it bubbles and forms a scum, in order that it should not run over and that it may be greatly purified, there is poured into it three or four pounds of lye, made from three parts of oak or similar ash and one of unslaked lime. But in the water, prior to its being poured in, is dissolved rock-alum, in the proportion of one hundred and twenty librae of the former to five librae of the latter. Shortly afterward the solution will be found to be clear and blue. It is boiled until the waters, which are easily volatile (subtiles), are evaporated, and then the greater part of the salt, after it has settled at the bottom of the pan, is taken out with iron ladles. Then the concentrated solution is transferred to the vat in which rods are placed horizontally and vertically, to which it adheres when cold, and if there be much, it is condensed in three or four days into saltpetre. Then the solution which has not congealed, is poured out and put on one side or re-boiled. The saltpetre being cut out and washed with its own solution, is thrown on to boards that it may drain and dry. The yield of saltpetre will be much or little in proportion to whether the solution has absorbed much or little; when the saltpetre has been obtained from lye, which purifies itself, it is somewhat clear and pure.

The purest and most transparent, because free from salt, is made if it is drawn off at the thickening stage, according to the following method. There are poured into the caldron the same number of amphorae of the solution as of congii of the lye of which I have already spoken, and into the same caldron is thrown as much of the already made saltpetre as the solution and lye will dissolve. As soon as the mixture effervesces and forms scum, it is transferred to a vat, into which on a cloth has been thrown washed sand obtained from a river. Soon afterward the plug is drawn out of the hole at the bottom, and the mixture, having percolated through the sand, escapes into a tub. It is then reduced by boiling in one or another of the caldrons, until the greater part of the solution has evaporated; but as soon as it is well boiled and forms scum, a little lye is poured into it. Then it is transferred to another vat in which there are small rods, to which it adheres and congeals in two days if there is but little of it, or if there is much in three days, or at the most in four days; if it does not condense, it is poured back into the caldron and re-boiled down to half; then it is transferred to the vat to cool. The process must be repeated as often as is necessary.

Others refine saltpetre by another method, for with it they fill a pot made of copper, and, covering it with a copper lid, set it over live coals, where it is heated until it melts. They do not cement down the lid, but it has a handle, and can be lifted for them to see whether or not the melting has taken place. When it has melted, powdered sulphur is sprinkled in, and if the pot set on the fire does not light it, the sulphur kindles, whereby the thick, greasy matter floating on the saltpetre burns up, and when it is consumed the saltpetre is pure. Soon afterward the pot is removed from the fire, and later, when cold, the purest saltpetre is taken out, which has the appearance of white marble, the earthy residue then remains at the bottom. The earths from which the solution was made, together with branches of oak or similar trees, are exposed under the open sky and sprinkled with water containing saltpetre. After remaining thus for five or six years, they are again ready to be made into a solution.

Pure saltpetre which has rested many years in the earth, and that which exudes from the stone walls of wine cellars and dark places, is mixed with the first solution and evaporated by boiling.

Thus far I have described the methods of making nitrum, which are not less varied or multifarious than those for making salt. Now I propose to describe the methods of making alum, which are likewise neither all alike, nor simple, because it is made from boiling aluminous water until it condenses to alum, or else from boiling a solution of alum which is obtained from a kind of earth, or from rocks, or from pyrites, or other minerals.

This kind of earth having first been dug up in such quantity as would make three hundred wheelbarrow loads, is thrown into two tanks; then the water is turned into them, and if it (the earth) contains vitriol it must be diluted with urine. The workmen must many times a day stir the ore with long, thick sticks in order that the water and urine may be mixed with it; then the plugs having been taken out of both tanks, the solution is drawn off into a trough, which is carved out of one or two trees. If the locality is supplied with an abundance of such ore, it should not immediately be thrown into the tanks, but first conveyed into open spaces and heaped up, for the longer it is exposed to the air and the rain, the better it is; after some months, during which the ore has been heaped up in open spaces into mounds, there are generated veinlets of far better quality than the ore. Then it is conveyed into six or more tanks, nine feet in length and breadth and five in depth, and afterward water is drawn into them of similar solution. After this, when the water has absorbed the alum, the plugs are pulled out, and the solution escapes into a round reservoir forty feet wide and three feet deep. Then the ore is thrown out of the tanks into other tanks, and water again being run into the latter and the urine added and stirred by means of poles, the plugs are withdrawn and the solution is run off into the same reservoir. A few days afterward, the reservoirs containing the solution are emptied through a small launder, and run into rectangular lead caldrons; it is boiled in them until the greater part of the water has evaporated. The earthy sediment deposited at the bottom of the caldron is composed of fatty and aluminous matter, which usually consists of small incrustations, in which there is not infrequently found a very white and very light powder of asbestos or gypsum. The solution now seems to be full of meal. Some people instead pour the partly evaporated solution into a vat, so that it may become pure and clear; then pouring it back into the caldron, they boil it again until it becomes mealy. By whichever process it has been condensed, it is then poured into a wooden tub sunk into the earth in order to cool it. When it becomes cold it is poured into vats, in which are arranged horizontal and vertical twigs, to which the alum clings when it condenses; and thus are made the small white transparent cubes, which are laid to dry in hot rooms.

If vitriol forms part of the aluminous ore, the material is dissolved in water without being mixed with urine, but it is necessary to pour that into the clear and pure solution when it is to be re-boiled. This separates the vitriol from the alum, for by this method the latter sinks to the bottom of the caldron, while the former floats on the top; both must be poured separately into smaller vessels, and from these into vats to condense. If, however, when the solution was re-boiled they did not separate, then they must be poured from the smaller vessels into larger vessels and covered over; then the vitriol separating from the alum, it condenses. Both are cut out and put to dry in the hot room, and are ready to be sold; the solution which did not congeal in the vessels and vats is again poured back into the caldron to be re-boiled. The earth which settled at the bottom of the caldron is carried back to the tanks, and, together with the ore, is again dissolved with water and urine. The earth which remains in the tanks after the solution has been drawn off is emptied in a heap, and daily becomes more and more aluminous in the same way as the earth from which saltpetre was made, but fuller of its juices, wherefore it is again thrown into the tanks and percolated by water.

Aluminous rock is first roasted in a furnace similar to a lime kiln. At the bottom of the kiln a vaulted fireplace is made of the same kind of rock; the remainder of the empty part of the kiln is then entirely filled with the same aluminous rocks. Then they are heated with fire until they are red hot and have exhaled their sulphurous fumes, which occurs, according to their divers nature, within the space of ten, eleven, twelve, or more hours. One thing the master must guard against most of all is not to roast the rock either too much or too little, for on the one hand they would not soften when sprinkled with water, and on the other they either would be too hard or would crumble into ashes; from neither would much alum be obtained, for the strength which they have would be decreased. When the rocks are cooled they are drawn out and conveyed into an open space, where they are piled one upon the other in heaps fifty feet long, eight feet wide, and four feet high, which are sprinkled for forty days with water carried in deep ladles. In spring the sprinkling is done both morning and evening, and in summer at noon besides. After being moistened for this length of time the rocks begin to fall to pieces like slaked lime, and there originates a certain new material of the future alum, which is soft and similar to the liquidae medullae found in the rocks. It is white if the stone was white before it was roasted, and rose-coloured if red was mixed with the white; from the former, white alum is obtained, and from the latter, rose-coloured. A round furnace is made, the lower part of which, in order to be able to endure the force of the heat, is made of rock that neither melts nor crumbles to powder by the fire. It is constructed in the form of a basket, the walls of which are two feet high, made of the same rock. On these walls rests a large round caldron made of copper plates, which is concave at the bottom, where it is eight feet in diameter. In the empty space under the bottom they place the wood to be kindled with fire. Around the edge of the bottom of the caldron,. rock is built in cone-shaped, and the diameter of the bottom of the rock structure is seven feet, and of the top ten feet; it is eight feet deep. The inside, after being rubbed over with oil, is covered with cement, so that it may be able to hold boiling water; the cement is composed of fresh lime, of which the lumps are slaked with wine, of iron-scales, and of sea-snails, ground and mixed with the white of eggs and oil. The edges of the caldron are surmounted with a circle of wood a foot thick and half a foot high, on which the workmen rest the wooden shovels with which they cleanse the water of earth and of the undissolved lumps of rock that remain at the bottom of the caldron. The caldron, being thus prepared, is entirely filled through a launder with water, and this is boiled with a fierce fire until it bubbles. Then little by little eight wheelbarrow loads of the material, composed of roasted rock moistened with water, are gradually emptied into the caldron by four workmen, who, with their shovels which reach to the bottom, keep the material stirred and mixed with water, and by the same means they lift the lumps of undissolved rock out of the caldron. In this manner the material is thrown in, in three or four lots, at intervals of two or three hours more or less; during these intervals, the water, which has been cooled by the rock and material, again begins to boil. The water, when sufficiently purified and ready to congeal, is ladled out and run off with launders into thirty troughs. These troughs are made of oak, holm oak, or Turkey oak; their interior is six feet long, five feet deep, and four feet wide. In these the water congeals and condenses into alum, in the spring in the space of four days, and in summer in six days. Afterward the holes at the bottom of the oak troughs being opened, the water which has not congealed is drawn off into buckets and poured back into the caldron; or it may be preserved in empty troughs, so that the master of the workmen, having seen it, may order his helpers to pour it into the caldron, for the water which is not altogether wanting in alum, is considered better than that which has none at all. Then the alum is hewn out with a knife or a chisel. It is thick and excellent according to the strength of the rock, either white or pink according to the colour of the rock. The earthy powder, which remains three to four digits thick as the residue of the alum at the bottom of the trough is again thrown into the caldron and boiled with fresh aluminous material. Lastly, the alum cut out is washed, and dried, and sold.

Alum is also made from crude pyrites and other aluminous mixtures. It is first roasted in an enclosed area : then, after being exposed for some months to the air in order to soften it, it is thrown into vats and dissolved. After this the solution is poured into the leaden rectangular pans and boiled until it condenses into alum. The pyrites and other stones which are not mixed with alum alone, but which also contain vitriol, as is most usually the case, are both treated in the manner which I have already described. Finally, if metal is contained in the pyrites and other rock, this material must be dried, and from it either gold, silver, or copper is made in a furnace.

Vitriol can be made by four different methods; by two of these methods from water containing vitriol; by one method from a solution of melanteria, sory and chalcitis; and by another method from earth or stones mixed with vitriol.

The vitriol water is collected into pools, and if it cannot be drained into them, it must be drawn up and carried to them in buckets by a workman. In hot regions or in summer, it is poured into out-of-door pits which have been dug to a certain depth, or else it is extracted from shafts by pumps and poured into launders, through which it flows into the pits, where it is condensed by the heat of the sun. In cold regions and in winter these vitriol waters are boiled down with equal parts of fresh water in rectangular leaden caldrons; then, when cold, the mixture is poured into vats or into tanks, which Pliny calls wooden fish-tanks. In these tanks light cross-beams are fixed to the upper part, so that they may be stationary, and from them hang ropes stretched with little stones; to these the contents of the thickened solutions congeal and adhere in transparent cubes or seeds of vitriol, like bunches of grapes.

By the third method vitriol is made out of melanteria and sory. If the mines give an abundant supply of melanteria and sory, it is better to reject the chalcitis, and especially the misy, for from these the vitriol is impure, particularly from the misy. These materials having been dug and thrown into the tanks, they are first dissolved with water; then, in order to recover the pyrites from which copper is not rarely smelted and which forms a sediment at the bottom of the tanks, the solution is transferred to other vats, which are nine feet wide and three feet deep. Twigs and wood which float on the surface are lifted out with a broom made of twigs, and afterward all the sediment settles at the bottom of this vat. The solution is poured into a rectangular leaden caldron eight feet long, three feet wide, and the same in depth. In this caldron it is boiled until it becomes thick and viscous, when it is poured into a launder, through which it runs into another leaden caldron of the same size as the one described before. When cold, the solution is drawn off through twelve little launders, out of which it flows into as many wooden tubs four and a half feet deep and three feet wide. Upon these tubs are placed perforated crossbars distant from each other from four to six digits, and from the holes hang thin laths, which reach to the bottom, with pegs or wedges driven into them. The vitriol adheres to these laths, and within the space of a few days congeals into cubes, which are taken away and put into a chamber having a sloping board floor, so that the moisture which drips from the vitriol may flow into a tub beneath. This solution is re-boiled, as is also that solution which was left in the twelve tubs, for, by reason of its having become too thin and liquid, it did not congeal, and was thus not converted into vitriol.

The fourth method of making vitriol is from vitriolous earth or stones. Such ore is at first carried and heaped up, and is then left for five or six months exposed to the rain of spring and autumn, to the heat of summer, and to the rime and frost of winter. It must be turned over several times with shovels, so that the part at the bottom may be brought to the top, and it is thus ventilated and cooled; by this means the earth crumbles up and loosens, and the stone changes from hard to soft. Then the ore is covered with a roof, or else it is taken away and placed under a roof, and remains in that place six, seven, or eight months. Afterward as large a portion as is required is thrown into a vat, which is half-filled with water; this vat is one hundred feet long, twenty-four feet wide, eight feet deep. It has an opening at the bottom, so that when it is opened the dregs of the ore from which the vitriol comes may be drawn off, and it has, at the height of one foot from the bottom, three or four little holes, so that, when closed, the water may be retained, and when opened the solution flows out. Thus the ore is mixed with water, stirred with poles and left in the tank until the earthy portions sink to the bottom and the water absorbs the juices. Then the little holes are opened, the solution flows out of the vat, and is caught in a vat below it; this vat is of the same length as the other, but twelve feet wide and four feet deep. If the solution is not sufficiently vitriolous it is mixed with fresh ore; but if it contains enough vitriol, and yet has not exhausted all of the ore rich in vitriol, it is well to dissolve the ore again with fresh water. As soon as the solution becomes clear, it is poured into the rectangular leaden caldron through launders, and is boiled until the water is evaporated. Afterward as many thin strips of iron as the nature of the solution requires, are thrown in, and then it is boiled again until it is thick enough, when cold, to congeal into vitriol. Then it is poured into tanks or vats, or any other receptacle, in which all of it that is apt to congeal does so within two or three days. The solution which does not congeal is either poured back into the caldron to be boiled again, or it is put aside for dissolving the new ore, for it is far preferable to fresh water. The solidified vitriol is hewn out, and having once more been thrown into the caldron, is re-heated until it liquefies; when liquid, it is poured into moulds that it may be made into cakes. If the solution first poured out is not satisfactorily thickened, it is 'condensed two or three times, and each time liquefied in the caldron and re-poured into the moulds, in which manner pure cakes, beautiful to look at, are made from it.

The vitriolous pyrites, which are to be numbered among the mixtures (mistura), are roasted as in the case of alum, and dissolved with water, and the solution is boiled in leaden caldrons until it condenses into vitriol. Both alum and vitriol are often made out of these, and it is no wonder, for these juices are cognate, and only differ in the one point,-that the former is less, the latter more, earthy. That pyrites which contains metal must be smelted in the furnace. In the same manner, from other mixtures of vitriolic and metalliferous material are made vitriol and metal. Indeed, if ores of vitriolous pyrites abound, the miners split small logs down the centre and cut them off in lengths as long as the drifts and tunnels are wide, in which they lay them down transversely; but, that they may be stable, they are laid on the ground with the wide side down and the round side up, and they touch each other at the bottom, but not at the top. The intermediate space is filled with pyrites, and the same crushed are scattered over the wood, so that, coming in or going out, the road is flat and even. Since the drifts or tunnels drip with water, these pyrites are soaked, and from them are freed the vitriol and cognate things. If the water ceases to drip, these dry and harden, and then they are raised from the shafts, together with the pyrites not yet dissolved in the water, or they are carried out from the tunnels; then they are thrown into vats or tanks, and boiling water having been poured over them, the vitriol is freed and the pyrites are dissolved. This green solution is transferred to other vats or tanks, that it may be made clear and pure; it is then boiled in the lead caldrons until it thickens; afterward it is poured into wooden tubs, where it condenses on rods, or reeds, or twigs, into green vitriol.

Sulphur is made from sulphurous waters, from sulphurous ores, and from sulphurous mixtures. These waters are poured into the leaden caldrons and boiled until they condense into sulphur. From this latter, heated together with iron-scales, and transferred into pots, which are afterward covered with lute and refined sulphur, another sulphur is made, which we call caballinum.

The ores which consist mostly of sulphur and of earth, and rarely of other minerals, are melted in big-bellied earthenware pots. The furnaces, which hold two of these pots, are divided into three parts; the lowest part is a foot high, and has an opening at the front for the draught; the top of this is covered with iron plates, which are perforated near the edges, and these support iron rods, upon which the firewood is placed. The middle part of the furnace is one and a half feet high, and has a mouth in front, so that the wood may be inserted; the top of this has rods, upon which the bottom of the pots stand. The upper part is about two feet high, and the pots are also two feet high and one digit thick; these have below their mouths a long, slender spout. In order that the mouth of the pot may be covered, an earthenware lid is made which fits into it. For every two of these pots there must be one pot of the same size and shape, and without a spout, but having three holes, two of which are below the mouth and receive the spouts of the two first pots; the third hole is on the opposite side at the bottom, and through it the sulphur flows out. In each furnace are placed two pots with spouts, and the furnace must be covered by plates of iron smeared over with lute two digits thick; it is thus entirely closed in, but for two or three ventholes through which the mouths of the pots project. Outside of the furnace, against one side, is placed the pot without a spout, into the two holes of which the two spouts of the other pots penetrate, and this pot should be built in at both sides to keep it steady. When the sulphur ore has been placed in the pots, and these placed in the furnace, they are closely covered, and it is desirable to smear the joint over with lute, so that the sulphur will not exhale, and for the same reason the pot below is covered with a lid, which is also smeared with lute. The wood having been kindled, the ores are heated until the sulphur is exhaled, and the vapour, arising through the spout, penetrates into the lower pot and thickens into sulphur, which falls to the bottom like melted wax. It then flows out through the hole, which, as I said, is at the bottom of this pot; and the workman makes it into cakes, or thin sticks or thin pieces of wood are dipped in it. Then he takes the burning wood and glowing charcoal from the furnace, and when it has cooled, he opens the two pots, empties the residues, which, if the ores were composed of sulphur and earth, resemble naturally extinguished ashes; but if the ores consisted of sulphur and earth and stone, or sulphur and stone only, they resemble earth completely dried or stones well roasted. Afterward the pots are re-filled with ore, and the whole work is repeated.

The sulphurous mixture, whether it consists of stone and sulphur only, or of stone and sulphur and metal, may be heated in similar pots, but with perforated bottoms. Before the furnace is constructed, against the " second " wall of the works two lateral partitions are built seven feet high, three feet long, one and a half feet thick, and these are distant from each other twenty-seven feet. Between them are seven low brick walls, that measure but two feet and the same number of digits in height, and, like the other walls, are three feet long and one foot thick; these little walls are at equal distances from one another, consequently they will be two and one half feet apart. At the top, iron bars are fixed into them, which sustain iron plates three feet long and wide and one digit thick, so that they can bear not only the weight of the pots, but also the fierceness of the fire. These plates have in the middle a round hole one and a half digits wide; there must not be more than eight of these, and upon them as many pots are placed. These pots are perforated at the bottom, and the same number of whole pots are placed underneath them; the former contain the mixture, and are covered with lids; the latter contain water, and their mouths are under the holes in the plates. After wood has been arranged round the upper pots and ignited, the mixture being heated, red, yellow, or green sulphur drips from it and flows down through the hole, and is caught by the pots placed underneath the plates, and is at once cooled by the water. If the mixture contains metal, it is reserved for smelting, and, if not, it is thrown away. The sulphur from such a mixture can best be extracted if the upper pots are placed in a vaulted furnace, like those which I described among other metallurgical subjects in Book VIII., which has no floor, but a grate inside; under this the lower pots are placed in the same manner, but the plates must have larger holes.

Others bury a pot. in the ground, and place over it another pot with a hole at the bottom, in which pyrites or cadmia, or other sulphurous stones are so enclosed that the sulphur cannot exhale. A fierce fire heats the sulphur, and it drips away and flows down into the lower pot, which contains water. (Illustration next page).

Bitumen is made from bituminous waters, from liquid bitumen, and from mixtures of bituminous substances. The water, bituminous as well as salty, at Babylon, as Pliny writes, was taken from the wells to the salt works and heated by the great heat of the sun, and condensed partly into liquid bitumen and partly into salt. The bitumen being lighter, floats on the top, while the salt being heavier, sinks to the bottom. Liquid bitumen, if there is much floating on springs, streams and rivers, is drawn up in buckets or other vessels; but, if there is little, it is collected with goose wings, pieces of linen, ralla, shreds of reeds, and other things to which it easily adheres, and it is boiled in large brass or iron pots by fire and condensed. As this bitumen is put to divers uses, some mix pitch with the liquid, others old cart-grease, in order to temper its viscosity; these, however long they are boiled in the pots, cannot be made hard. The mixtures containing bitumen are also treated in the same manner as those containing sulphur, in pots having a hole in the bottom, and it is rare that such bitumen is not highly esteemed.

Since all solidified juices and earths, if abundantly and copiously mixed with the water, are deposited in the beds of springs, streams or rivers, and the stones therein are coated by them, they do not require the heat of the sun or fire to harden them. This having been pondered over by wise men, they discovered methods by which the remainder of these solidified juices and unusual earths can be collected. Such waters, whether flowing from springs or tunnels, are collected in many wooden tubs or tanks arranged in consecutive order, and deposit in them such juices or earths; these being scraped off every year, are collected, as chrysocolla in the Carpathians and as ochre in the Harz.

There remains glass, the preparation of which belongs here, for the reason that it is obtained by the power of fire and subtle art from certain solidified juices and from coarse or fine sand. It is transparent, as are certain solidified juices, gems, and stones; and can be melted like fusible stones and metals. First I must speak of the materials from which glass is made; then of the furnaces in which it is melted; then of the methods by which it is produced.

It is made from fusible stones and from solidified juices, or from other juicy substances which are connected by a natural relationship. Stones which are fusible, if they are white and translucent, are more excellent than the others, for which reason crystals take the first place. From these, when pounded, the most excellent transparent glass was made in India, with which no other could be compared, as Pliny relates. The second place is accorded to stones which, although not so hard as crystal, are yet just as white and transparent. The third is given to white stones, which are not transparent. It is necessary, however, first of all to heat all these, and afterward they are subjected to the pestle in order to break and crush them into coarse sand, and then they are passed through a sieve. If this kind of coarse or fine sand is found by the glass-makers near the mouth of a river, it saves them much labour in burning and crushing. As regards the solidified juices, the first place is given to soda; the second to white and translucent rock-salt; the third to salts which are made from lye, from the ashes of the musk ivy, or from other salty herbs. Yet there are some who give to this latter, and not to the former, the second place. One part of coarse or fine sand made from fusible stones should be mixed with two parts of soda or of rock-salt or of herb salts, to which are added minute particles of magnes. It is true that in our day, as much as in ancient times, there exists the belief in the singular power of the latter to attract to itself the vitreous liquid just as it does iron, and by attracting it to purify and transform green or yellow into white; and afterward fire consumes the magnes. When the said juices are not to be had, two parts of the ashes of oak or holmoak, or of hard oak or Turkey oak, or if these be not available, of beech or pine, are mixed with one part of coarse or fine sand, and a small quantity of salt is added, made from salt water or sea-water, and a small particle of magnes; but these make a less white and translucent glass. The ashes should be made from old trees, of which the trunk at a height of six feet is hollowed out and fire is put in, and thus the whole tree is consumed and converted into ashes. This is done in winter when the snow lies long, or in summer when it does not rain, for the showers at other times of the year, by mixing the ashes with earth, render them impure; for this reason, at such times, these same trees are cut up into many pieces and burned under cover, and are thus converted into ashes.

Some glass-makers use three furnaces, others two, others only one. Those who use three, melt the material in the first, re-melt it in the second. and in the third they cool the glowing glass vessels and other articles. Of these the first furnace must be vaulted and similar to an oven. In the upper chamber, which is six feet long, four feet wide, and two feet high, the mixed materials are heated by a fierce fire of dry wood until they melt and are converted into a vitreous mass. And if they are not satisfactorily purified from dross, they are taken out and cooled and broken into pieces; and the vitreous pieces are heated in pots in the same furnace.

The second furnace is round, ten feet in diameter and eight feet high, and on the outside, so that it may be stronger, it is encompassed by five arches, one and one half feet thick; it consists in like manner of two chambers, of which the lower one is vaulted and is one and one half feet thick. In front this chamber has a narrow mouth, through which the wood can be put into the hearth, which is on the ground. At the top and in the middle of its vault, there is a large round hole which opens to the upper chamber, so that the flames can penetrate into it. Between the arches in the walls of the upper chamber are eight windows, so large that the big-bellied pots may be placed through them on to the floor of the chamber, around the large hole. The thickness of these pots is about two digits, their height the same number of feet, and the diameter of the belly one and a half feet, and of the mouth and bottom one foot. In the back part of the furnace is a rectangular hole, measuring in height and width a palm, through which the heat penetrates into a third furnace which adjoins it.

This third furnace is rectangular, eight feet long and six feet wide; it also consists of two chambers, of which the lower has a mouth in front, so that firewood may be placed on the hearth which is on the ground. On each side of this opening in the wall of the lower chamber is a recess for oblong earthenware receptacles, which are about four feet long, two feet high, and one and a half feet wide. The upper chamber has two holes, one on the right side, the other on the left, of such height and width that earthenware receptacles may be conveniently placed in them. These latter receptacles are three feet long, one and a half feet high, the lower part one foot wide, and the upper part rounded. In these receptacles the glass articles, which have been blown, are placed so that they may cool in a milder temperature; if they were not cooled slowly they would burst asunder. When the vessels are taken from the upper chamber, they are immediately placed in the receptacles to cool.

Some who use two furnaces partly melt the mixture in the first, and not only re-melt it in the second, but also replace the glass articles there. Others partly melt and re-melt the material in different chambers of the second furnace. Thus the former lack the third furnace, and the latter, the first. But this kind of second furnace differs from the other second furnace, for it is, indeed, round, but the interior is eight feet in diameter and twelve feet high, and it consists of three chambers, of which the lowest is not unlike the lowest of the other second furnace. In the middle chamber wall there are six arched openings, in which are placed the pots to be heated, and the remainder of the small windows are blocked up with lute. In the middle top of the middle chamber is a square opening a palm in length and width. Through this the heat penetrates into the upper chamber, of which the rear part has an opening to receive the oblong earthenware receptacles, in which are placed the glass articles to be slowly cooled. On this side, the ground of the workshop is higher, or else a bench is placed there, so that the glass-makers may stand upon it to stow away their products more conveniently.

Those who lack the first furnace in the evening, when they have accomplished their day's work, place the material in the pots, so that the heat during the night may melt it and turn it into glass. Two boys alternately, during night and day, keep up the fire by throwing dry wood on to the hearth. Those who have but one furnace use the second sort, made with three chambers. Then in the evening they pour the material into the pots, and in the morning having extracted the fused material, they make the glass objects, which they place in the upper chamber, as do the others. The second furnace consists either of two or three chambers, the first of which is made of unburnt bricks dried in the sun. These bricks are made of a kind of clay that cannot be easily melted by fire nor resolved into powder; this clay is cleaned of small stones and beaten with rods. The bricks are laid with the same kind of clay instead of lime. From the same clay the potters also make their vessels and pots, which they dry in the shade. These two parts having been completed, there remains the third.

The vitreous mass having been made in the first furnace in the manner I described, is broken up, and the assistant heats the second furnace, in order that the fragments may be re-melted. In the meantime, while they are doing this, the pots are first warmed by a slow fire in the first furnace, so that the vapours may evaporate, and then by a fiercer fire, so that they become red in drying. Afterward the glass-makers open the mouth of the furnace, and, seizing the pots with tongs, if they have not cracked and fallen to pieces, quickly place them in the second furnace, and they fill them up with the fragments of the heated vitreous mass or with glass. Afterward they close up all the windows with lute and bricks, with the exception that in each there are two little windows left free; through one of these they inspect the glass contained in the pot, and take it up by means of a blow-pipe; in the other they rest another blow-pipe, so that it may get warm. Whether it is made of brass, bronze, or iron, the blow-pipe must be three feet long. In front of the window is inserted a lip of marble, on which rests the heaped-up clay and the iron shield. The clay holds the blow-pipe when it is put into the furnace, whereas the shield preserves the eyes of the glass-maker from the fire. All this having been carried out in order, the glass-makers bring the work to completion. The broken pieces they re-melt with dry- wood, which emits no smoke, but only a flame. The longer they re-melt it, the purer and more transparent it becomes, the fewer spots and blisters there are, and therefore the glass-makers can carry out their work more easily. For this reason those who only melt the material from which glass is made for one night, and then immediately make it up into glass articles, make them less pure and transparent than those who first produce a vitreous mass and then re-melt the broken pieces again for a day and a night. And, again, these make a less pure and transparent glass than do those who melt it again for two days and two nights, for the excellence of the glass does not consist solely in the material from which it is made, but also in the melting. The glass-makers often test the glass by drawing it up with the blowpipes; as soon as they observe that the fragments have been re-melted and purified satisfactorily, each of them with another blow-pipe which is in the pot, slowly stirs and takes up the glass which sticks to it in the shape of a ball like a glutinous, coagulated gum. He takes up just as much as he needs to complete the article he wishes to make; then he presses it against the lip of marble and kneads it round and round until it consolidates. When he blows through the pipe he blows as he would if inflating a bubble; he blows into the blow-pipe as often as it is necessary, removing it from his mouth to re-fill his cheeks, so that his breath does not draw the flames into his mouth. Then, twisting the lifted blow-pipe round his head in a circle, he makes a long glass, or moulds the same in a hollow copper mould, turning it round and round, then warming it again, blowing it and pressing it, he widens it into the shape of a cup or vessel, or of any other object he has in mind. Then he again presses this against the marble to flatten the bottom, which he moulds in the interior with his other blow-pipe. Afterward he cuts out the lip with shears, and, if necessary, adds feet and handles. If it so please him, he gilds it and paints it with various colours. Finally, he lays it in the oblong earthenware receptacle, which is placed in the third furnace, or in the upper chamber of the second furnace, that it may cool. When this receptacle is full of other slowly-cooled articles, he passes a wide iron bar under it, and, carrying it on the left arm, places it in another recess.

The glass-makers make divers things, such as goblets, cups, ewers, flasks, dishes, plates, panes of glass, animals, trees, and ships, all of which excellent and wonderful works I have seen when I spent two whole years in Venice some time ago. Especially at the time of the Feast of the Ascension they were on sale at Morano, where are located the most celebrated glass-works. These I saw on other occasions, and when, for a certain reason, I visited Andrea Naugerio in his house which he had there, and conversed with him and Francisco Asulano.


  Book 1     Book 2     Book 3     Book 4     Book 5     Book 6     Book 7     Book 8     Book 9     Book 10     Book 11     Book 12    Woodcuts